Journal of Computational Science 62 (2022) 101707

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

Check for

Using Machine Learning at scale in numerical simulations with SmartSim: An = %&&
application to ocean climate modeling

Sam Partee *, Matthew Ellis?, Alessandro Rigazzi ", Andrew E. Shao ¢, Scott Bachman ¢,
Gustavo Marques ¢, Benjamin Robbins ?

a Hewlett Packard Enterprise, Seattle, WA, USA

b Hewlett Packard Enterprise, Switzerland

¢ Canadian Centre for Climate Modelling and Analysis, Victoria, BG, Canada
d National Center for Atmospheric Research, Boulder, CO, USA

ARTICLE INFO ABSTRACT

Keywords:

Deep learning

Numerical simulation
Climate modeling

High performance computing
SmartSim

We demonstrate the first climate-scale, numerical ocean simulations improved through distributed, online
inference of Deep Neural Networks (DNN) using SmartSim. SmartSim is a library dedicated to enabling online
analysis and Machine Learning (ML) for high performance, numerical simulations. In this paper, we detail
the SmartSim architecture and provide benchmarks including online inference with a shared ML model, EKE-
ResNet, on heterogeneous HPC systems. We demonstrate the capability of SmartSim by using it to run a
12-member ensemble of global-scale, high-resolution ocean simulations, each spanning 19 compute nodes, all
communicating with the same ML architecture at each simulation timestep. In total, 970 billion inferences
are collectively served by running the ensemble for a total of 120 simulated years. The inferences are used
to predict the oceanic eddy kinetic energy (EKE), which is a variable that is used to tune different turbulence
closures in the model and thus directly affects the simulation. The root-mean-square of the error in EKE (as
compared to an eddy-resolving simulation) is 20% lower when using the ML-prediction than the previous
state of the art. This demonstration is an example of how machine learning methods can be integrated
into traditional numerical simulations, replace prognostic equations, and preserve overall simulation stability
without significantly affecting the time to solution.

1. Introduction interface design. However, for the full convergence of these two dis-
parate paradigms, the true difficulty (and opportunity) in bridging
Advances in machine-learning (ML) algorithms have spurred re- these workloads needs to be reformulated in terms of data exchange.

search and development for combining data-driven approaches and That is, how is data passed between a simulation and ML model at scale

traditional numerical simulations to improve both efficiency and ac-
curacy. The codebases of these numerical models are typically written
in Fortran/C/C++ and run on high-performance computing platforms
(HPC) via OpenMP and/or MPI parallelization. New software solu-
tions are thus needed to connect these compiled language codebases
to rapidly evolving ML and data analytics libraries, typically writ-
ten in Python. Currently, the diversity of programming languages,
dependence on file input/output (I/0), and large variance in com-
pute resource requirements for scientific applications makes it difficult
to perform analysis, training, and inference with most ML and data
analytics packages at the scale needed for HPC numerical simulations.

On its surface, the problem of being able to interface HPC applica-
tions with ML libraries is one of language interoperability and software

* Corresponding author.
E-mail address: sam@partee.io (S. Partee).

https://doi.org/10.1016/j.jocs.2022.101707

while making efficient use of heterogeneous computational resources?
Current approaches to addressing this problem can be roughly broken
down into two categories: offline (the ML and numerical compo-
nents of a simulation do not exchange data directly) and online (the
ML component is called while the simulation is running). Note that
in this work, this definition of “online” pertains to the process of
inferring from a trained machine learning model, not continuously up-
dating ML model parameters which is sometimes referred to as “online
learning”.

To illustrate the differences between online and offline approaches,
we review recent studies that couple ML and numerical models with
a focus on computational fluid dynamics (CFD) and climate modeling
domains due to the application presented in this work.

Received 2 September 2021; Received in revised form 30 March 2022; Accepted 9 May 2022

Available online 18 May 2022

1877-7503/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

S. Partee et al
1.1. Offline vs. online machine-learning applications

Offline ML surrogate modeling is the process by which a ML model
is trained on data previously generated by a simulation. The surrogate
is validated through the incorporation of surrogate inference data into a
simulation through the filesystem. In this paradigm, a simple workflow
would be to run the numerical simulation, store the output to disk,
and train/validate a ML model on the stored result. Online modeling,
in contrast, runs ML training and/or inference concurrently with the
numerical simulation itself. This can lead to several advantages includ-
ing higher spatiotemporal sampling of the simulation and reducing file
1/O-related latency. Perhaps most importantly, it allows ML to directly
influence the simulation itself.

Some ML libraries (e.g. Tensorflow and PyTorch) provide compiled
language APIs so that ML can be “hard-coded” into a simulation. For
example, this approach has been used to enable ML solutions in a
C++ based numerical CFD model, OpenFOAM [1], by compiling in
the C-based APIs for PyTorch [2] and TensorFlow [3]. However, these
popular libraries do not include Fortran APIs and so this approach
cannot be followed for the myriad of numerical models written in that
language. While recent additions to the Fortran standard have formal-
ized Fortran/C interoperability, the simulations themselves are often
not written with such interoperability in mind, potentially requiring
large refactors of simulation codebases and necessitating developers
who are conversant in both C and Fortran. In addition, ML development
generally evolves more quickly than the numerical simulations due to
the large-scale investment by industry and broader general interest.
Developers and maintainers of numerical simulations must then divert
their own relatively limited resources to maintain compatibility with
ML libraries.

Other approaches use the file-system as an intermediary between
training a ML model and the inference process from within a simula-
tion. For example, [4] uses a random-forest to replace a parameteriza-
tion of atmospheric convection in a climate model. The random forest
model is trained offline and saved into NetCDF files which are loaded
and called in the simulation by a custom Fortran module.

Another approach, Fortran Keras Bridge (FKB) [5], enables the
usage of Keras-based ML models for online inference in Fortran. FKB
builds on a NN library called Neural Fortran which implements a subset
of modern ML methods in Fortran. To utilize FKB, Keras-based models
must be trained, saved to file, and then loaded into Fortran simulations
at runtime. These approaches are specific to Fortran and certain ML
models/libraries, and involve similar requirements to embedding the
TensorFlow or Pytorch C API into a simulation. Both approaches also
lack the ability to utilize co-located or adjacent heterogeneous compute
(CPU and GPU) capabilities that are becoming more prevalent in new
HPC systems.

Another approach is rewrite the simulations (or portions thereof) in
a ML-friendly language. For example, the CliMA project [6] relies heav-
ily on the Julia programming language which by design generally has
interoperability with Python. Given time and development resources,
re-writing simulations in ML-friendly, performance oriented (e.g. not
Python) languages is recognized as a potential avenue for the inclusion
of ML in simulation at scale; however, many simulation codebases,
developed over decades of research, are not as amenable to porting to
a new language.

In a study combining ML and the Finite Volume version 3 atmo-
spheric generical circulation model [7], a Python wrapper was written
to call the main timestepping routines. This approach has the advantage
that the integration of the simulation can be controlled from Python.
Additionally, they also provided interfaces to set and receive the state
of the model via Python-Fortran interfaces allowing for the direct
diagnosis of the simulation state during the course of the simulation
(e.g. online analysis). Writing these interfaces however required signif-
icant and specialized technical expertise. An additional complication of
using a Python driver to interface with the underlying Fortran model is

Journal of Computational Science 62 (2022) 101707

that Python’s library management system scales poorly when hundreds
or thousands of clients are importing libraries stored on a network-
mounted filesystem [8] (containers can partly mitigate this problem but
add complexity to the running of the application and may not supported
on all HPC platforms).

1.2. Motivating the use of ML for oceanic turbulence

Climate change poses an ongoing and escalating threat to social
and economical welfare, and has been characterized by the United
Nations as the defining issue of our time [9]. Beginning with [10],
numerical climate models (comprised of physical and biogeochemical
models of the atmosphere, ocean, land, and cryosphere) have become
an invaluable tool to understand both historical and future change in
the Earth’s climate. Both numerical models and observational studies
confirm that the ocean is the primary sink of the excess heat and carbon
dioxide associated with climate change. It is responsible for the delay
in realizing the global warming expected from our present CO, con-
centrations [11] and absorbing between 30 and 40% of anthropogenic
carbon emitted since the dawn of the industrial age [12,13].

The ocean component of these climate models represents a sig-
nificant computational expense which is primarily a function of the
model’s spatial resolution. Of the models submitted to the most recent
Coupled Model Intercomparison Project [14], most are typically run
at spatial resolutions of O(100 km) with timesteps of O(1 h) to ac-
commodate experiments that span centuries to millennia of simulated
time. However, these spatial resolutions do not resolve the large-scale,
turbulent structures, known as mesoscale eddies, which dominate the
ocean’s kinetic energy field and transport heat, salt and biogeochem-
ical tracers [15-18]. Climate-scale ocean general circulation models
(OGCMs) would need to be run at roughly 8 to 16 times higher
resolution than present models to resolve mesoscale eddies, increasing
the computational cost by a factor of 512 to 4096. Accurate and
robust turbulence parameterizations, which estimate the effects of the
unresolved eddies, are crucial for providing skillful representations of
the ocean [19] and the climate system as a whole.

While a number of ML applications have been envisioned for the cli-
mate domain [20], one particular avenue of active research is the use of
ML as a surrogate model for turbulence parameterization or simulation
component emulation (e.g. [21-24]). A more recent study [25] trained
a deep neural network on one year’s worth of data from the Super
Parameterized Community Atmospheric Model version 3.0 to generate
a ML-based parameterization of cumulus, deep convection. Many of
these studies involved training a ML model on simulation data offline to
create a surrogate model for a parameterization. A primary motivation
of these studies is to reduce the time-to-solution as compared to ref-
erence simulations (used for training data) by replacing a numerically
expensive portion of the simulation with an ML surrogate. However one
of the major restrictions of the offline approach is that it is necessarily
a nonconcurrent workflow, that is the ML and numerical simulations
are completely decoupled, inhibiting the ability of each component to
influence the other. In addition, for large scale simulations using file
1/0 storing diagnostics of the simulation can itself become a bottleneck,
particularly for large-scale simulations.

In addition to the problem of language incompatibility discussed
previously, the implementation of ML models into numerical models
of the climate system have been impeded due to numerical concerns.
The PDEs that govern that atmosphere and ocean are quite stiff and
so errors and noise from ML predictions can rapidly develop into
numerical instabilities. Two recent studies [26,27] embed machine-
learning models into models of oceanic flow by directly influencing the
momentum equations. While these simulations were successful, they
were done in idealized configurations for a simplified set of equations
as compared to the realistic simulations used in climate simulations.
In this study, we pursue a different approach by augmenting an ex-
isting, widely-used used parameterization of ocean turbulence with

S. Partee et al.

Journal of Computational Science 62 (2022) 101707

Workload Manager

SmartSim Experiment

Launch

Launch Workloads

HPC Workload /
Simulation

Python | C | C++ | Fortran

- SmartRedis }

Orchestrator

W 8 «

AlModels DataSources Code / Scripts

Data Exchange

Experiment Controller

Data Exchange

Online Analysis (e.g., Jupyter Notebook)

SmartRedis

Fig. 1. The architecture for SmartSim is provided for a given use case. In this instance, the Infrastructure Library (IL) is being used to launch the Orchestrator alongside a
simulation embedded with the SmartRedis clients. In addition to communication with the simulation, the Orchestrator is also sending data to an analysis environment for online

analysis, visualization and/or training of a machine learning model.

a machine-learning model. This approach allows us to improve the
accuracy of the parameterization while also relying on a wealth of
research spanning 30 years that helps us account for failure modes
that might arise from ML errors. By using SmartSim, we are able to
run this simulation online with the rest of the simulation, exchanging
data between the MPI ranks and the databases used for inference, with
minimal computational cost.

1.3. Outline

In this paper, we describe a new software framework SmartSim that
enables the convergence of numerical simulations and ML workloads on
heterogeneous architectures. Synthetic scaling studies are performed to
demonstrate the performance of the system. We then embed SmartSim
into an ocean climate model that uses online inference to augment
an existing turbulence parameterization. The computational perfor-
mance and stability of this approach is evaluated by integrating a
12-member ensemble of global ocean simulations for 10 simulated
years. Finally, we conclude by discussing the broader applicability of
SmartSim beyond online ML inference.

2. SmartSim architecture

SmartSim is comprised of two libraries:

* SmartSim Infrastructure Library: A Python-based workflow li-
brary that facilitates dynamic execution of HPC simulations and
ML infrastructure

» SmartRedis: A lightweight client library used in applications to
communicate with infrastructure started by SmartSim.

A representative workflow which utilizes both of these is demonstrated
in Fig. 1.

2.1. SmartSim infrastructure library

The Infrastructure Library (IL) is a framework for simplifying the
deployment of complex, multi-stage experiments on HPC systems. In
basic terms, the IL provides a Python interface where users can define
their workload and launch it on HPC systems. Instead of static con-
figuration files, the IL provides methods to create Python objects that
encapsulate workflow components which can be used to start, stop and
monitor workloads from interactive mediums like Jupyter Notebooks.
By controlling the creation and execution of workloads from a Python
interface, the IL enables dynamic customization and augmentation of
workloads which is difficult to achieve through HPC batch schedulers,
like Slurm, alone.

The Experiment object is the primary user interface of the IL.
Experiments are used to create references to HPC applications referred

to as a Model. Model instances contain all parameters for executing a
given application on a system, such as compute resource parameters,
model parameters, and input files. In addition to models, users can
create Ensemble objects which are collections of Model instances
that are treated as a single workload.

Once created, Model and Ensemble instances are used as ref-
erences to workloads that can be started, monitored, stopped, and
restarted through the Experiment interface. The experiment allows
users to launch workloads asynchronously such that after applications
are successfully launched, users can interactively monitor and analyze
their workload.

2.1.1. Orchestrator

A core capability of the IL is launching the Orchestrator. The Orches-
trator is a key—value database that can be used to stage data between
components of a workload. The Orchestrator is based on Redis [28] but
is compatible with any database that uses the Redis API and module
system. The Orchestrator can be deployed on separate compute hosts
from the application (standard deployment) or placed on the same
compute hosts as a Model instance (co-located deployment) when
launched through the IL.

The Orchestrator resides in-memory and can be distributed across
compute hosts providing low-latency access to many clients in parallel.
User-defined Models created by the IL can be coupled, meaning
exchange data, at runtime by passing data through the Orchestrator
using SmartRedis Clients. This loosely coupled paradigm, similar to
the architecture of client-server microservices, allows Fortran, C, C++
and Python applications to communicate at scale without writing to
the filesystem or using tightly coupled MPI communications such as a
shared MPI communicator.

In addition to providing data staging between coupled applications,
the Orchestrator provides ML capability to HPC workloads at runtime.
ML models can be stored in the Orchestrator and served to HPC
applications. Despite being written in Python, all models are executed
in a C runtime on CPU or GPU. The Orchestrator supports models
written with TensorFlow, Keras, PyTorch, or models saved in an ONNX
format (e.g. sci-kit learn) through the use of the RedisAI module [29].
Section 3.3 shows the inference performance of the Orchestrator in
various settings.

There are a few benefits of the ML capability that SmartSim pro-
vides that differentiate it from other approaches. Unlike [5], users of
SmartSim can switch between ML frameworks and implementations
without needing to make any changes to their application code. The
same SmartRedis client calls work across all supported ML frameworks,
and models. Second, ML libraries like PyTorch evolve quickly and
supporting direct integration of even a single ML library, as is the
case in [2,3], is a daunting integration and maintenance task for
mature codebases. SmartSim enforces no dependencies on the user’s

S. Partee et al.

application other than SmartRedis which is comparatively lightweight.
Lastly, HPC applications and ML models are written in the language
best suited for the task: Python for ML — C/C++/Fortran for HPC.
Hence, SmartSim provides a performant way to utilize Python-based
ML without re-writing [6] or wrapping [7] a user application in an
“ML-friendly” language like Julia or Python.

The application presented in Section 4.4 utilized the IL to deploy
a distributed Orchestrator (i.e. the ‘standard deployment’ alongside
an Ensemble of SmartRedis-enabled ocean models. The Orchestrator
hosted an ML model (PyTorch) which was called from Fortran to
augment and improve the Eddy Kinetic Energy parameterization of
each ensemble member in parallel.

2.2, SmartRedis

2.2.1. Tensors

The SmartRedis clients use an n-dimensional tensor data structure
for transferring data, storing data, evaluating scripts, and evaluating
models. To minimize the code changes in applications, the SmartRedis
tensor data structure is opaque to the user and native n-dimensional
arrays in the host language (C, C++, Fortran, Python) are used in
the user-facing API functions. For example, in Python, the SmartRedis
client works directly with NumPy arrays. For C and C++, both nested
and contiguous memory arrays are supported. Only contiguous arrays
are supported in Fortran, but with care taken to preserve the row-
major convention. The reader is encouraged to consult the SmartRedis
documentation for a detailed description of supported data types and
API functions.

2.2.2. Datasets

In many scientific applications, multiple n-dimensional tensors are
naturally grouped together as they have some contextual relation-
ship. Additionally, there is often metadata associated with the ten-
sors (e.g. dimension names) or the simulation from which they come
(e.g. time step information) that should be stored alongside the tensors.
The SmartRedis DataSet API allows users to group n-dimensional ten-
sors and metadata into a single data structure that can be accessed or
manipulated in the Orchestrator with a single key. Specifically, users
need not know where the tensors and metadata within the DataSet
object are stored once they have been sent to the Orchestrator. Users
only need to know the name given to the dataset when constructing
the DataSet object.

2.2.3. Model inference and data processing

The SmartRedis clients support the remote execution of Pytorch,
TensorFlow, Keras, and ONNX models that are stored in the Orches-
trator. With this capability, embedded SmartRedis clients can augment
simulations with machine learning models stored in the in-memory
database.

SmartRedis clients support storing, retrieving and executing ML
models with the aforementioned ML frameworks. When a call to
client.set_model() is performed, a copy of the model is dis-
tributed to every node of the database to leverage all available hard-
ware. When performing the remote execution of a model through a
SmartRedis client, the model chosen for execution is the model co-
located with some or all of the model input data. In the case where
all of the input data or output for a model execution is not on the
same node of the database, the SmartRedis client will move temporary
copies of the input or output data to the node. The movement of data
between nodes for model inference is completely opaque to the user
and is handled internally by the SmartRedis client.

Similar to model execution, SmartRedis provides an API for storing,
retrieving, and executing TorchScript programs inside of the Orches-
trator for data processing tasks. The scripts are JIT-traced Python
programs that can operate on any tensor data and dataset tensors stored
in the Orchestrator. The API for storing, retrieving, and executing

Journal of Computational Science 62 (2022) 101707

scripts follows the same behavior and naming conventions as the API
for models.

ML models and PyTorch scripts stored in the Orchestrator can
be executed on CPU or GPU. The outputs of models and scripts are
stored within the Orchestrator until requested by the user. In this way,
scripts and models can be executed sequentially to form computational
pipelines for distributed processing and inference.

3. Scaling SmartSim applications

A synthetic scaling simulation was run on a Cray XC50 to quantify
Orchestrator inference performance. In this scaling analysis, a set of
synthetic simulations was run with a fixed number of Orchestrator
(database) nodes and varying number of SmartRedis clients and an-
other set of synthetic simulations was run with varying number of
database nodes and a fixed number of SmartRedis clients. In order
to make the synthetic scaling as reproducible as possible, we use a
common ML model and dataset: ResNet-50 [30] and ImageNet [31]
respectively. The data is a 3D tensor of shape 224 x 224 x 3.

During the synthetic simulation, each client connected to the Or-
chestrator repeatedly sets a tensor (image), calls a PyTorch script to
process the tensor stored in the database, calls the ResNet model on
the processed tensor, and retrieves the output vector. It is important to
note that processing and inference both execute inside the Orchestrator
on GPU, but are invoked by the SmartRedis clients remotely. Through
this repeated set of SmartRedis client API calls, the ability of the
SmartSim infrastructure to handle uncoordinated tensor, model, and
script requests on a busy network can be assessed.

3.1. Hardware configuration

The number of database nodes in the scaling experiment was var-
ied from 4 to 16. Each database node was equipped with an Nvidia
P100 GPU, 64 GB DDR4-2400 memory, and 18-core 2.3 GHz Intel
Broadwell processors. The number of clients simultaneously connected
to the database varied from 960 to 7680 using computational nodes
containing 48-core 2.1 GHz Intel SkyLake CPUs with 192 GB DDR4-
2666 memory. The Cray XC50, used for this scaling study, utilizes the
Aries interconnect.

RedisAl, the Redis module that provides the ML runtimes to the Or-
chestrator, contains several methods for tuning performance for given
workloads such as the number of /0 threads, GPU and CPU worker
threads, and background threads. In this study, 4 threads per GPU (one
P100 per compute node), one I/0 thread, and one background thread
were unbound and free to schedule on the 18 cores of the Broadwell
CPU.

3.2. Software configuration

The synthetic scaling simulation is a C++ application that uti-
lizes the SmartRedis client API to set tensors, execute models, execute
scripts, and retrieve tensors. The code snippet in Listing 1 shows the
primary loop in the synthetic scaling simulation that contains the
SmartRedis API calls. Note that during the scaling study, each SmartRe-
dis API call and the outer loop were enclosed by timing calculations,
but these have been removed from the excerpt to improve readability.
Also, note that the code excerpt shows that a total of 100 iterations
of the SmartRedis API calls is performed by each MPI rank, which is
consistent with the results that will be shown in Section 3.3.

The synthetic simulation code excerpt is executed by all of the MPI
ranks in the scaling study. Note that the model and script referenced in
the code excerpt API calls is set by the SmartSim Python script through
the SmartRedis Python client API. In this way, the model and script are
set in the database before the C++ synthetic simulation is executed.
The only optional parameter specified when setting the model with
client.set_model() is a baich size of 10,000. By setting a large

S. Partee et al.

Journal of Computational Science 62 (2022) 101707

1 for (int i=0; i<100; i++) {

3 // Create an input tensor key using MPI rank

4 // and iteration mnumber

5 std::string in_key = "resnet_input_rank " +

6 std::to_string(rank) + "_" +

7 std::to_string(i);

o // Create an script output temsor key using
10 // MPI rank and iteration number

11 std::string script_out_key =

12 "resnet_processed_input_rank_ " +
13 std::to_string(rank) + "_" +
14 std::to_string(i);

16 // Create a model output temnsor key using

17 // MPI rank and iteration number

18 std::string out_key = "resnet_output_rank_ " +
19 std: :to_string(rank) +
20 "_" + std::to_string(i);

21
22 // Put a tensor in the database
23 client.put_tensor(in_key, array, {224, 224, 3},

24 SmartRedis: :TensorType::flt,

27 // Run the script
28 client.run_script(script_name, "pre_process_3ch",

29 {in_key}, {script_out_key});

31 // Run the model

32 client.run_model (model_name, {script_out_keyl},
33 {out_key});

34

35 // Retrieve the tensor

36 client.unpack_tensor (out_key, result, {1,1000},

25 SmartRedis: :MemoryLayout: :nested) ;

37 SmartRedis: :TensorType::flt,
38 SmartRedis: :MemoryLayout: :nested);
39}

Listing 1: Excerpt of synthetic scaling study main loop.

value for the batch size, the RedisAl module will group together tensors
that arrive close together into a single model execution. RedisAl will
attempt to batch as many batches as possible up to the provided batch
size. A minimum batch size can be set to ensure a scalar value of
batches are grouped before execution, however, no minimum batch size
was used in this scaling study.

The synthetic scaling simulation (C++ application) is executed by a
SmartSim Python driver script that sets the total number of SmartRedis
clients connecting to the database and the number of databases in each
execution of the C++ application. For every permutation reported here,

a fresh database cluster is launched to maintain uniformity across all
executions.

3.3. Results

Fig. 2 show the scaling behavior of SmartRedis API calls for select
combinations of database node counts and SmartRedis client counts.
Recall that in each run of the synthetic simulation there are between
960 and 7680 MPI ranks, and each MPI rank has a SmartRedis client
connection to the database. Additionally, each MPI rank executes one

S. Partee et al.

put_tensor
4.001 — 4 DB nodes T
350, 8 DB nodes
—— 16 DB nodes
3.00
— 250
2
u
g 2.00
F 150
1.00
0.50
0.00 IAJ P Wi N] I l I

960 1920 2880 3840 4800 5760 6720 7680

MPI Ranks
run_model
—— 4 DB nodes T
4.00 8 DB nodes T
—— 16 DB nodes T
3.00
o
£
E 2.00

1.0

et T T

960 1920 2880 3840 4800 5760 6720 7680
MPI Ranks

(=]

Journal of Computational Science 62 (2022) 101707

unpack_tensor

—— 4 DB nodes _ [
0.501 —— 8 DB nodes _ _ [
—— 16 DB nodes
0.40
0
2 0.30
£
S
0.20
0.10
00| 11z Lidikiddbl&ll-d31:4
960 1920 2880 3840 4800 5760 6720 7680
MPI Ranks
run_script
5001 — 4 DB nodes [
8 DB nodes T
4.00{ —— 16 DB nodes -
= 3.00
[
E
F 2.00
- ‘|r I | \]
0.00 . I I - -+ +

960 1920 2880 3840 4BOO 5760 6720 7680
MPI Ranks

Fig. 2. Execution time of SmartRedis API calls using Redis clusters of 4, 8, and 16 DB nodes, with varying client connection count. Violin plots show timing distributions and
whiskers extend from minimum to maximum recorded timings. Dashed lines connect mean values.

hundred iterations of SmartRedis API calls. As a result there is a distri-
bution of run time across and within each MPI rank, with the aggregate
behavior across all ranks and iterations shown in the same plots. No
synchronization of ranks happens between iterations, however, an MPI
barrier is used at the very start of the client program so that all ranks
start simultaneously.

In Fig. 2, the mean run times for varying client counts with fixed
database node counts are connected with dashed lines. At each data
point violin plots show timing distribution, with whiskers extending
from minimum to maximum recorded timings. Some variability be-
tween executions is expected and can be attributed to shared system
network congestion, eager batching in the database, kernel involvement
in TCP communication, and database node to application node ratio.

For the 3 most time-consuming API calls, put_tensor,
run_model, and run_script, the mean runtime of SmartRedis API
calls scales linearly as the number of SmartRedis clients is increased
with a fixed database node count. Adding additional database nodes
reduces both the mean and maximum times. The reduction in max-
imum time of a rank is especially important for applications where
run_model would be a blocking part of the algorithm. Asynchronous
versions of run_model, and run_script are promising future im-
provements to SmartRedis that could overlap simulations with ML
computation.

The M to N ratio of database compute nodes and application
compute nodes provides an interesting point of discussion. The smallest
ratio (20:16) is represented by the 20 application node (960 rank) to
16 database node run in Fig. 2. The study done with 160 nodes (7680
rank) used for the client program and 4 database nodes is the largest
ratio (160:4). While more research is needed to prescribe ratios for
practical applications, the authors generally suggest staying below a
ratio of 60:1 (application to database nodes) when using at most 48
clients per application node. However, this ratio is expected to grow as
future optimizations are made to client communication strategies.

4. Application: Parameterizing oceanic turbulence using Smart-
Sim

4.1. Motivation

The partial differential equations (PDEs) solved numerically by
OGCMs are a specific application of the Navier-Stokes equations that
express the laws of conservation of mass, momentum, and energy
in continuum mechanics form. Parameterizations in these equations
generally take the form of extra terms that are added to account
for physical processes that occur at scales smaller than the model
grid. Without additional constraints these terms potentially violate the
fundamental conservation laws, or, at minimum, improperly represent
the ways in which these quantities are added, removed, or transferred
within the model domain [32].

Expressing the conservation laws in terms of their effects on the
kinetic and potential energies of the flow can clarify how these parame-
terizations should behave. Viewed through this lens, parameterizations
should account for how sub-gridscale (“eddy”) energy is exchanged
with the energy of the resolved flow. Modern ocean modeling theory
thus considers the eddy energy to be a lynchpin variable mediating
essentially all of the parameterizations in the model [33]. However,
as with all other sub-gridscale variables, a method for obtaining the
eddy energy must be developed separately from the solution of the
fundamental PDEs.

A PDE describing the evolution of the eddy kinetic energy can
be derived from theory, but includes many terms that cannot be ex-
pressed using only quantities associated with a model’s resolved flow.
The present state-of-the-art method for obtaining the eddy energy
thus invokes an extra PDE that approximates its true mathematical
form [34]. The modifications to the true PDE are severe; many terms
are dropped and multiple others are parameterized, limiting the fidelity
of the equation to truly represent eddy effects. In this study we use a
data-driven approach using machine-learning to replace the PDE for
eddy kinetic energy, with the goal of improving the accuracy of the
simulation. This approach needs to be sufficiently performant to not
impede the ocean model from being used in multi-millennial climate
simulations.

S. Partee et al.
4.2. Numerical model description

This study uses three global configurations of the Modular Ocean
Model version 6 (MOMS6), an OGCM that has been used for ocean
climate simulations (e.g. [35]). The first ‘eddy-resolving’ (ER) configu-
ration, uses a spatial resolution of 1/10° in both the latitudinal and
longitudinal directions (about 10 km, resulting in 7.5 million ocean
grid points). This resolution is sufficient to resolve mesoscale eddies
between the equator and mid-latitudes (= 40° N/S). The other two
configurations use a spatial resolution of 1/4° (about 25 km, resulting
in 2.7 million ocean grid points), which falls into the so-called ‘eddy-
permitting’ regime where the eddies are partly resolved but turbulence
parameterizations are still needed. These two configurations are identi-
cal except for the eddy parameterizations that are employed: one uses
the Mesoscale Eddy Kinetic Energy (MEKE) closure suggested by [34],
a prognostic eddy kinetic energy equation that represents the current
state-of-the-art, while the other uses “SmartSim-EKE”, the trained neu-
ral network (NN) (detailed in Section 4.3) to infer the eddy kinetic
energy. The estimates of EKE are then converted to a coefficient used
to control the strength of the Gent—McWilliams [36] parameterization
of eddy effects on the resolved circulation.

To generate the data used to train the NN and to provide a bench-
mark of comparison for EKE, the ER simulation is integrated for
20 years to allow the eddy field to come into equilibrium. EKE at
various scales is calculated by coarsening the output by a factor of 2-10.

The features used to predict eddy kinetic energy were chosen with
the requirement that each must be rotationally-invariant, meaning that
it is unchanged under a uniform rotation of the model’s coordinate
system. This is needed to make the results of the training as agnostic
as possible to different global grid geometries, which can vary sub-
stantially from model to model and for different applications. Physical
principles and appealing to the phenomenology of ocean turbulence
also helped to inform the final choices of the four predictors that were
used in these experiments (e.g.[37]), to train the NN:

+ Surface mean kinetic energy (MKE): A source/sink of eddy kinetic
energy in the inverse energy cascade

* Surface relative vorticity (RV): Similar to MKE but for angular
momentum

» Column-averaged isopycnal slope: A measure of the potential
energy available to generate turbulence

» The Rossby radius of deformation divided by the square root of
horizontal grid area: A measure of whether the length scale of
the eddies can be resolved by the model grid. Values significantly
greater than 1 indicate that the model can resolve turbulence.

The last two parameters are non-dimensional and were specifically
chosen in an attempt to make the NN ‘scale-aware’ i.e. the predictions
should not predict high EKE in regions where the numerical model
resolution is sufficient to fully resolve the eddy field. Additionally, these
fields were chosen since they have no direct correlation to geographic
location to ensure that the NN was not inadvertently learning a spatial
pattern.

4.3. Neural network architecture and training

To predict the EKE value, we used a small NN mainly consisting
of residual blocks; these are sequences of 2D convolutional layers,
in which skip-connections sum the output of one internal layer to
the output of the block: they are typically found in ResNet-derived
networks [38—40]. Such building blocks were chosen primarily for two
reasons: 2D-convolutions are computed efficiently by the GPUs em-
ployed for training and inference, and residual blocks (and their skip-
connections) show advantages during the gradient back-propagation
phase of the NN training. Since the input of the NN is a single point
with 4 features, the first layers are transposed convolutions (also called
deconvolutions), which extend the width and height of each sample to

Journal of Computational Science 62 (2022) 101707

7, so that the convolutional layers in the residual blocks can operate
on it. Different types and numbers of residual blocks were tested, and
the best results (in terms of time to accuracy and robustness) were
obtained with three bottleneck residual blocks [38] performing group
convolutions. Attempts to use fewer residual blocks resulted in faster
inference, but also in some numeric errors (where EKE could not be
computed). The final part of the NN consists of two fully connected
layers that output the predicted surface EKE value. Throughout the rest
of this work, the NN topology (shown in Fig. 3) will be referred to as
EKEResNet.

As mentioned above, each input sample has four features (predic-
tors). The features have different statistical distributions, and an ad
hoc pre-processing step is needed to avoid numerical problems when
training the NN. MKE and isopycnal slope approximately follow a
log-normal distribution, requiring a natural log transformation. The
distribution of relative vorticity is symmetric, with a very narrow peak
around zero, but a range of several orders of magnitude. To reduce the
range without losing information around zero, the function

—In|x|-C ifx<0,
Fp(x) =70 ifx=0, Q)
Inx+C else

is applied to relative vorticity. Intuitively, the effect of f, is to apply
the logarithm to both the positive and the negative domain. The
result obtained on the negative domain, where the absolute value of
x has to be taken, is multiplied by —1 to ensure monotonicity. This
is not sufficient to make the function injective, as values around zero
diverge to +o0. As injectivity is desirable to avoid loss of information,
a constant value C is added (subtracted) to the results obtained on the
positive (negative) domain. C is chosen so that C > In¢, where ¢ is a
cutoff parameter representing the smallest non-zero value which can be
encountered in the distribution. This value could be enforced by setting
x to 0 when x < ¢, or it could be the machine accuracy corresponding
to the floating point precision chosen for the NN training. C was set to
36 for this work.

After the pre-processing step the mean and standard deviation of
each feature is stored and then every feature is standardized. Notice
that the Rossby radius of deformation is not pre-processed otherwise,
as standardizing it is sufficient to avoid numerical problems or loss of
accuracy.

As shown in Fig. 4, the EKE values appear to approximately follow
a log-normal distribution, thus the network is trained against In(EKE).

EKEResNet was trained with Stochastic Gradient Descent, with a
learning rate of 4 x 10~ and a step-wise schedule with peak value
reached at the fifth epoch, out of a total of 100. The mean square
error was employed as a loss function, with L2 penalty of 2x 10~*. The
training was performed in parallel on 8 GPUs (Nvidia P100 or V100),
with a local batch size of 512 samples. Parallelism was achieved using
HPE DL-plugin [41].

With the described setting, the NN shows a strong tendency towards
overfitting values close to the mean of the distribution. This could be
due to the abundance of samples belonging to the In(EKE) distribution
mean, and the scarcity of samples belonging to the distribution tails.
This is a problem not only because the resulting distribution is different
from the target one, but also because the most important EKE values for
the simulation are those close to the highest values of the distribution,
and a model trained with this approach tends to miss them.

To mitigate this problem, a weighted sampling scheme was used:
to each data-point in the training set a weight corresponding to the
inverse of its distribution probability density is assigned, this weight
is proportional to the probability of drawing each sample during a
training epoch. For each epoch, only one-tenth of the data set was used.
With this approach, the probability of drawing samples of each portion
of the In(EKE) domain becomes more uniform, and the distribution of
the predicted In(EKE) values has a broader peak and extends more to
the tails of the distribution, as shown in Fig. 5.

S. Partee et al.

Journal of Computational Science 62 (2022) 101707

< S &
L % -
< 0e) <
—) ;;
Inout Transposed Residual Adaptive Fully
P Convolution Block Max Pooling Connected

Fig. 3. Simplified view of EKEResNet topology. For each constitutive block, the dimension of the output tensor is shown as WxHxC. Residual blocks are implemented as bottleneck

blocks.

0.6

o
n

e
B

Probability Density
o =]
N w

@
i

0.0

—— Normal distribution p= —5.1794, 0=0.9947
Training data

=9 -8 -7 r3
In EKE

Fig. 4. Distributions of In(EKE) on the whole training dataset and fitted normal distribution.

Probability Density
o [=) o = o
= o ® o N

o
[N

00!

[Target Distribution
[Standard Sampling
[Weighted Sampling

In EKE

Fig. 5. Distributions of In(EKE) values as predicted by the NN trained with uniform and weighted sampling, compared to ground truth for one test sample.

While it is true that the weighted sampling gives a qualitatively
better distribution of In(EKE), it also has a negative effect on the
achieved accuracy: the minimum mean square error attained during
the training was 0.55 using uniform sampling and 0.60 with weighted
sampling.

4.4. Results

An ensemble of 12 SmartSim-EKE simulations were run to demon-
strate the scalability and performance of SmartSim, evaluate the accu-
racy of the ML-EKE parameterization, and estimate its computational
cost at scale. These types of ensembles are used to characterize un-
certainty in weather predictions and climate projections. Each member

was integrated for 10 simulated years using 910 physical cores (10,920
cores total, using a combination of Intel Skylake and Cascadelake
processors) with 16 Nvidia P100 GPUs dedicated for the shared Or-
chestrator. The ensemble members were branched from a previous
20-year spin-up simulation that used the MEKE parameterization. A
spatially-random 0.0001 °C perturbation was added to the 3D tem-
perature field of each member to differentiate it from the others in
the ensemble. (Note that we were limited to 10 simulated years due
to the computational resources that could be dedicated during this
experiment. Ongoing work is being done to extend the simulation to
centennial-scale simulations.)

The online inference portion of MOMS6 (i.e. the SmartRedis-based
calls to EKEResNet) is called 8 times per simulated day (about every

gl

Partee et al.

Eddy-Resolving

Journal of Computational Science 62 (2022) 101707

Smartsim-EKE MEKE

1ja°

000 001 002 003 004 005 000 001 002
EKE [m?s 7] EKE [m?s 7]

003 004 005 000 0ol 002 003 004 005
EKE [ms~7]

Fig. 6. Eddy kinetic energy (EKE), averaged over the last year of each simulation, calculated from the eddy-resolving (ER) 1/10° simulation (a), inferred online using EKEResNet
(referred to as SmartSim-EKE), averaged over all 12 ensemble members (b), and the current state-of-the-art MEKE parameterization (c). Both SmartSim-EKE and MEKE use a 1/4°
grid which is slightly coarser than the factor of 2 coarsening shown in (a); the ER EKE thus represents a lower-bound on what the ‘true’ EKE should be at that resolution.

-1.00

—— SmartSim-EKE
-1.25 1 MEKE

-1.50 1 — &
-1.75 1
-2.00 1

-2.25 1

log 10(EKE) [mPs™?]

-2.50 1

-2.75 1

-3.00

-40 =20 0 20 40
Latitude [°N]

Fig. 7. Zonally averaged EKE (on a logl0 scale) as a function of latitude from the ER,
SmartSim-EKE, and MEKE. Note that within 20 degrees of the equator MEKE computes
a near-zero value for EKE.

4 s of walltime) on 2.7 million grid points spread across 910 cores.
Because MOM6 must wait for every online inference loop to complete,
the most accurate way to compare the overall expense of the SmartSim-
EKE-based approach is to use the timings of the slowest subdomain.
Examining the timings for ensemble member 1 (which is representative
of the ensemble as a whole), the total elapsed time in put_tensor
was 24s whereas run_model was about 2 h. Based on a total wall time
of 136 h, this means that SmartSim-EKE incurred an additional 1.5%
overhead to the computational cost of the model, which we consider
to be an acceptable tradeoff to gain an enhanced representation of
EKE. We note that this 1.5% overhead was also seen when running an
ensemble member individually, suggesting that the Orchestrator was
not being overtaxed. Integrated over the entirety of the ensemble sim-
ulation, approximately 970 billion inferences were performed resulting
in an average rate of 1.86 million online inferences per second.

SmartSim-EKE and MEKE are compared to the “true" EKE calculated
directly from ER (Figs. 6 and 7). The ER simulation correctly shows
elevated EKE in the regions where vigorous eddy activity is expected:
western boundary currents (e.g. the Gulf Stream and the Kuroshio
currents), the Southern Ocean, and the eastern equatorial Pacific. In
comparison, SmartSim-EKE generally overestimates the extent of the
equatorial EKE, but otherwise reasonably captures the magnitude and
large-scale patterns seen in ER (Fig. 7). In the Equatorial Pacific, the
eddy field is driven by a unique set of dynamics due to the near-
absence of the Coriolis force, and is not well-represented by the features
that we used to predict the occurrence of baroclinic turbulence. The
resulting errors in the prediction do not end up affecting the simulation
because a separate scaling function ensures eddy parameterizations
are not applied in the near-equatorial regions where the eddies are
well-resolved.

SmartSim-EKE is an improvement over MEKE particularly in the
subtropics. In the extensions of the western boundary currents,
SmartSim-EKE shows high values of EKE whereas MEKE’s values are

too low. In the rest of the gyres SmartSim tends to have EKE patterns
more similar to the ER simulation as compared to MEKE which has
large areas of the ocean with near-zero values of EKE. Overall, the
root-mean-square error of EKE between the ER and SmartSim-EKE cases
is 0.012 m? s~2 a reduction of about 20% compared to the MEKE
simulation (0.015 m?s~2). Excluding the tropics (which as mentioned
above is a region where eddies are resolved by the simulation), yields
an even more dramatic improvement as compared to MEKE (0.008
vs 0.012 m?s™2), a 39% improvement. This suggests that some of the
omitted or parameterized terms in MEKE’s prognostic EKE equation
result in significant structural biases.

The 10-year integrations shown here are not sufficient to evaluate
whether the improved representations of EKE result in a more skillful
representation of the ocean for weather prediction or climate. 10 years
however is sufficient to demonstrate that the inclusion of machine-
learning still leads to stable, realistic simulations of the large-scale
ocean circulation. In the Atlantic basin, the Gulf Stream separates the
clockwise flow of the subtropical gyre from the subpolar North Atlantic
gyre. These two gyres can be seen clearly in the ensemble average
of sea surface height (SSH) (Fig. 8a) as positive (red) and negative
(blue) colors, respectively. The standard deviation of SSH (Fig. 8) is also
elevated (blue) in the expected locations where strong eddy activity
modulates the path of the North Atlantic Current. The SSH anomalies
in two of the ensemble members (Figs. 8c,d) show trains of positive
and negative anomalies indicating the presence of eddies. This suggests
that the SmartSim-EKE parameterization is not so strong that it is
suppressing resolved eddies, a well-known pitfall in eddy-permitting
simulations [42]. We note that all 12 ensemble members completed
their 10-year simulations with no evidence of numerical instability.

Based on these results, the approach used for SmartSim-EKE demon-
strates a effective means of using machine-learning to improve the
accuracy of ocean simulations without incurring a significant computa-
tional cost. Additionally, by offloading a GPU-intensive computation
onto database nodes we are able to efficiently use CPU-only and
CPU/GPU nodes on a heterogeneous cluster — an especially important
consideration for the types of HPC platforms becoming commonplace
at climate modeling centers. The overall methodology can be readily
extended to atmospheric, land, and ice models, opening the possibility
for machine-learning augmented, fully-coupled climate models.

5. Discussion

This study introduces a new software solution, SmartSim, that is
composed of an Infrastructure Library and a Client Library that can cou-
ple existing High Performance Computing (HPC) simulations written in
Fortran/C/C++ to Machine Learning (ML) and data analysis libraries
online and at scale. We demonstrated that, with minimal code changes,
SmartSim clients can leverage the SmartRedis API to support the remote
execution of TensorFlow, Keras, ONNX, and PyTorch models and scripts
for distributed, online inference.

In addition to the describing the SmartSim architecture, we demon-
strated the particular use case of integrating SmartSim with Modular

S. Partee et al.

Journal of Computational Science 62 (2022) 101707

-1.0 -0.5 0.0 0.5
Ensemble Mean SSH [m]

1.0

O ea—
0.000 0.005 0.010 0.015 0.020
Std. Dev. SSH [m]

[|
-0.02 -0.01 0.00 0.01 0.02
Member 1 Anomaly SSH [m]

-0.02 -0.01 0.00 0.01 0.02
Member 2 Anomaly SSH [m]

Fig. 8. Mean (a) and variability (b) of sea surface height (roughly the streamlines of the large-scale flow) across the SmartSim-EKE ensemble as diagnosed by sea surface height
on the last day of the simulation. Panels (¢) and (d) show the difference in SSH between ensemble members 1 (¢) and 2 (d) and the ensemble mean.

Ocean Model 6 (MOMS6), which is written in Fortran. We replaced an
existing parameterization for eddy kinetic energy with a data driven,
ML model. The JIT-traced, PyTorch model was queried at runtime (on-
line) for the prediction of eddy kinetic energy by the Fortran SmartRe-
dis Client. Additionally, we showed that SmartSim is capable of running
ensembles of global ocean simulations utilizing the same ML infrastruc-
ture, with minimal impact on ensemble member (simulation) runtime.
As stated, we believe the results shown here are the first demonstrations
of using ML within freely running, realistic, global simulations of the
ocean.

SmartSim facilitates the convergence of Al and numerical simulation
workloads by removing the necessity for file I/0, providing clients to
seamlessly connect applications across programming languages, and
utilizing a ML library agnostic API between workloads. As mentioned,
previous efforts to utilize ML in simulation models have not addressed
impediments to the actual utilization of ML. Approaches that re-create
ML libraries in simulation languages, embed large ML libraries or
python interpreters, or use the filesystem as an intermediary lack the
flexibility to support and benefit from the rapid advancements in the
data science ecosystem.

Due to the massive size of compute resources, HPC applications
have historically maintained highly controlled strategies for communi-
cation and data access. The result has been optimized, yet constrained,
data flow driven by MPI communication barriers. Data extraction has
almost entirely relied on parallel, networked filesystems which intro-
duce meaningful delays in simulation model development, analysis and
enhancement. Users have not, without major architectural changes,

10

been able to easily couple applications across languages, runtimes, and
heterogeneous processor types (CPU/GPU). The loosely coupled nature
of the data communication in SmartSim enables new paradigms in
application coupling, computational steering, real-time analysis, and
the utilization of ML at scale.

The authors recognize that loosening the constraints on data com-
munication in HPC applications may lead to degradation in application
performance at extreme scales. We believe the added flexibility of com-
munication is of greater importance given the types of applications and
systems that are enabled through this approach. In addition, we show
SmartSim scales linearly to thousands of processors in multiple con-
figurations on modern, heterogeneous HPC systems. Our scaling study,
application, and SmartSim codebase are all available with instructions
for reproduction of this work.

In future work, the authors plan to investigate the utilization of
SmartSim for continuous online training of ML models as well as
support new features such as flash storage and asynchronous data com-
munication. In conjunction, integrations of SmartRedis data-structures
into popular open source data formats (ex. Xarray, VTK) and libraries
(ex. Ray, Dask) will be explored.

CRediT authorship contribution statement

Sam Partee: Conceptualization, Methodology, Software, Investi-
gation, Data curation, Writing — original draft, Writing — review &
editing, Visualization, Supervision, Project administration. Matthew
Ellis: Conceptualization, Methodology, Software, Investigation, Data

S. Partee et al.

curation, Writing — original draft, Visualization. Alessandro Rigazzi:
Conceptualization, Methodology, Software, Investigation, Data cura-
tion, Writing — original draft, Visualization. Andrew E. Shao: Con-
ceptualization, Methodology, Software, Validation, Formal analysis,
Investigation, Data curation, Writing — original draft, Writing — review
& editing, Visualization. Scott Bachman: Conceptualization, Methodol-
ogy, Validation, Formal analysis, Investigation, Writing — original draft.
Gustavo Marques: Conceptualization, Validation, Formal analysis, In-
vestigation, Writing — original draft. Benjamin Robbins: Resources,
Writing — original draft, Supervision, Project administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors would like to acknowledge Elliot Ronaghan for his help
with application performance, and RedisLabs for their continued sup-
port. AES acknowledges support from Mitacs as an Accelerate Research
Fellow under IT15738.

References

[1] H.G. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to compu-
tational continuum mechanics using object-oriented techniques, Comput. Phys.
12 (6) (1998) 620-631, http://dx.doi.org/10.1063/1.168744, arXiv:https://aip.
scitation.org/doi/pdf/10.1063/1.168744, URL https://aip.scitation.org/doi/abs/
10.1063/1.168744.

N. Geneva, N. Zabaras, Quantifying model form uncertainty in Reynolds-averaged
turbulence models with Bayesian deep neural networks, J. Comput. Phys.
383 (2019) 125-147, http://dx.doi.org/10.1016/j.jcp.2019.01.021, URL https:
//linkinghub.elsevier.com/retrieve/pii/$0021999119300464.

R. Maulik, H. Sharma, S. Patel, B. Lusch, E. Jennings, A turbulent eddy-viscosity
surrogate modeling framework for Reynolds-averaged Navier-Stokes simulations,
2020, [Physics] URL http://arxiv.org/abs/1910.10878, arXiv:1910.10878.

P.A. O’'Gorman, J.G. Dwyer, Using machine learning to parameterize moist
convection: potential for modeling of climate,climate change,and extreme events,
J. Adv. Modelling Earth Syst. 10 (10) (2018) 2548-2563, http://dx.doi.
org/10.1029/2018MS001351, URL https://onlinelibrary.wiley.com/doi/abs/10.
1029/2018MS001351.

J. Ott, M. Pritchard, N. Best, E. Linstead, M. Curcic, P. Baldi, A fortran-keras
deep learning bridge for scientific computing, 2020, [Cs] URL http://arxiv.org/
abs/2004.10652, arXiv:2004.10652.

T. Schneider, S. Lan, A. Stuart, J. Teixeira, Earth system modeling 2.0: a blueprint
for models that learn from observations and targeted high-resolution simulations,
Geophys. Res. Lett. 44 (24) (2017) 12,396-12,417, http://dx.doi.org/10.1002/
2017GL076101, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/
2017GL076101 arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/
2017GL076101.

J. McGibbon, N.D. Brenowitz, M. Cheeseman, S.K. Clark, J. Dahm, E. Davis, O.D.
Elbert, R.C. George, L.M. Harris, B. Henn, A. Kwa, W.A. Perkins, O. Watt-Meyer,
T. Wicky, C.S. Bretherton, O. Fuhrer, Fv3gfs-Wrapper: a Python Wrapper of the
FV3GFS Atmospheric Model, Climate and Earth System Modeling, 2021, http:
//dx.doi.org/10.5194/gmd-2021-22, URL https://gmd.copernicus.org/preprints/
gmd-2021-22/.

Y. Feng, N. Hand, Launching python applications on peta-scale massively parallel
systems, in: S. Benthall, S. Rostrup (Eds.), Proceedings of the 15th Python
in Science Conference, 2016, pp. 137-143, http://dx.doi.org/10.25080/Majora-
629e541a-013.

IPCC, Summary for policymakers, in: T. Stocker, D. Qin, G.-K. Plattner, M. Tignor,
S. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. Midgley (Eds.), Climate
Change 2013: The Physical Science Basis. Contribution of Working Group I to
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
Cambridge University Press, Cambridge, United Kingdom and New York, NY,
USA, 2013, pp. 1-30, http://dx.doi.org/10.1017/CBO9781107415324.004, URL
www.climatechange2013.org.

S. Manabe, R.T. Wetherald, Thermal equilibrium of the atmosphere with a
given distribution of relative humidity, J. Atmos. Sci. 24 (3) (1967) 241-259,
http://dx.doi.org/10.1175/1520-0469(1967)024<0241: TEOTAW=>2.0.CO;2.

K.E. Trenberth, J.T. Fasullo, M.A. Balmaseda, Earth’s energy imbalance, J. Clim.
27 (9) (2014) 3129-3144.

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

11

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]

[31]
[32]

[33]

[34]

[35]

Journal of Computational Science 62 (2022) 101707

T. DeVries, M. Holzer, F. Primeau, Recent increase in oceanic carbon uptake
driven by weaker upper-ocean overturning, Nature 542 (7640) (2017) 215-218.
N. Gruber, D. Clement, B.R. Carter, R.A. Feely, S. Van Heuven, M. Hoppema, M.
Ishii, R.M. Key, A. Kozyr, S.K. Lauvset, et al., The oceanic sink for anthropogenic
CO2 from 1994 to 2007, Science 363 (6432) (2019) 1193-1199.

V. Eyring, S. Bony, G.A. Meehl, C.A. Senior, B. Stevens, R.J. Stouffer, K.E.
Taylor, Overview of the coupled model intercomparison project phase 6 (CMIP6)
experimental design and organization, Geosci. Model Dev. 9 (5) (2016) 1937-
1958, http://dx.doi.org/10.5194/gmd-9-1937-2016, URL https://www.geosci-
model-dev.net/9/1937/2016/gmd-9-1937-2016.html.

S.R. Jayne, J. Marotzke, The oceanic eddy heat transport, J. Phys. Oceanogr. 32
(12) (2002) 3328-3345.

R. Ferrari, C. Wunsch, Ocean circulation Kinetic energy: Reservoirs, sources, and
sinks, Annu. Rev. Fluid Mech. 41 (2009).

D.B. Chelton, M.G. Schlax, R.M. Samelson, Global observations of nonlinear
mesoscale eddies, Prog. Oceanogr. 91 (2) (2011) 167-216.

B.P. Kirtman, C. Bitz, F. Bryan, W. Collins, J. Dennis, N. Hearn, J.L. Kinter, R.
Loft, C. Rousset, L. Siqueira, C. Stan, R. Tomas, M. Vertenstein, Impact of ocean
model resolution on CCSM climate simulations, Clim. Dynam. 39 (6) (2012)
1303-1328, http://dx.doi.org/10.1007/500382-012-1500-3.

B.A. Boville, P.R. Gent, The NCAR climate system model, version one, J. Clim.
11 (6) (1998) 1115-1130.

M. Sonnewald, R. Lguensat, D.C. Jones, P.D. Dueben, J. Brajard, V. Balaji,
Bridging observations, theory and numerical simulation of the ocean using
machine learning, Environ. Res. Lett. (2021) 28.

V.M. Krasnopolsky, M.S. Fox-Rabinovitz, A.A. Belochitski, Using ensemble of
neural networks to learn stochastic convection parameterizations for climate and
numerical weather prediction models from data simulated by a cloud resolving
model, Adv. Artif. Neural Syst. 2013 (2013) 1-13, http://dx.doi.org/10.1155/
2013/485913, URL https://www.hindawi.com/journals/aans/2013/485913/.
N.D. Brenowitz, C.S. Bretherton, Prognostic validation of a neural network
unified physics parameterization, Geophys. Res. Lett. 45 (12) (2018) 6289-6298,
http://dx.doi.org/10.1029/2018GL078510, URL http://doi.wiley.com/10.1029/
2018GL078510.

Y. Han, G.J. Zhang, X. Huang, Y. Wang, A moist physics parameterization
based on deep learning, J. Adv. Modelling Earth Syst. 12 (9) (2020) http:
//dx.doi.org/10.1029/2020M5002076, URL https://onlinelibrary.wiley.com/doi/
10.1029/2020MS002076.

T. Beucler, S. Rasp, M. Pritchard, P. Gentine, Achieving conservation of energy
in neural network emulators for climate modeling, 2019, [Physics] URL http:
//arxiv.org/abs/1906.06622, arXiv:1906.06622.

S. Rasp, M.S. Pritchard, P. Gentine, Deep learning to represent subgrid processes
in climate models, Proc. Natl. Acad. Sci. 115 (39) (2018) 9684-9689, http:
//dx.doi.org/10.1073/pnas. 1810286115, URL http://www.pnas.org/lookup/doi/
10.1073/pnas.1810286115.

T. Bolton, L. Zanna, Applications of deep learning to ocean data inference
and subgrid parameterization, J. Adv. Modelling Earth Syst. 11 (1) (2019)
376-399, http://dx.doi.org/10.1029/2018MS001472, URL https://onlinelibrary.
wiley.com/doi/abs/10.1029/2018MS001472, _eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1029/2018MS001472.

A.P. Guillaumin, L. Zanna, Stochastic-deep learning parameterization of ocean
momentum forcing, J. Adv. Modelling Earth Syst. 13 (9) (2021) http://dx.doi.
org/10.1029/2021M85002534, €2021MS002534 URL https://onlinelibrary.wiley.
com/doi/abs/10.1029/2021MS002534, _eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1029/2021MS5002534.

URL https://github.com/antirez/redis.

URL https://oss.redis.com/redisai/.

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR,
IEEE, Las Vegas, NV, USA, 2016, pp. 770-778, http://dx.doi.org/10.1109/CVPR.
2016.90, URL http://ieeexplore.ieee.org/document/7780459/.

Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, K. Keutzer, ImageNet training in
minutes, 2017, arXiv:1709.05011.

C. Eden, A. Iske, Energy Transfers in Atmosphere and Ocean, 2019, OCLC:
1091374853.

L. Zanna, S. Bachman, M.F. Jansen, Energizing turbulence closures in ocean
models, in: CLIVAR Exchanges/US CLIVAR Variations. Vol. 18, (1) 2020, pp.
3-8, http://dx.doi.org/10.5065/g8w0-fy32.

M.F. Jansen, LM. Held, A. Adcroft, R. Hallberg, Energy budget-based backscat-
ter in an eddy permitting primitive equation model, Ocean Model. 94
(2015) 15-26, http://dx.doi.org/10.1016/j.0cemod.2015.07.015, URL https://
www.sciencedirect.com/science/article/pii/S1463500315001341.

A. Adcroft, W. Anderson, V. Balaji, C. Blanton, M. Bushuk, C.0. Dufour,
J.P. Dunne, S.M. Griffies, R. Hallberg, M.J. Harrison, L.M. Held, M.F. Jansen,
J.G. John, J.P. Krasting, A.R. Langenhorst, S. Legg, Z. Liang, C. McHugh, A.
Radhakrishnan, B.G. Reichl, T. Rosati, B.L. Samuels, A. Shao, R. Stouffer, M.
Winton, A.T. Wittenberg, B. Xiang, N. Zadeh, R. Zhang, The GFDL global ocean
and sea ice model OM4.0: Model description and simulation features, J. Adv.
Modelling Earth Syst. 11 (10) (2019) 3167-3211, http://dx.doi.org/10.1029/
2019MS001726, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
2019MS001726.

S. Partee et al.

[36]

[37]

[38]

[39]

[40]

P.R. Gent, J.C. Mcwilliams, Isopycnal mixing in ocean circulation models,
J. Phys. Oceanogr. 20 (1) (1990) 150-155, http://dx.doi.org/10.1175/1520-
0485(1990)020<0150:IMIOCM>2.0.CO;2.

N.A. Phillips, Energy transformations and meridional circulations asso-
ciated with simple baroclinic waves in a two-level, quasi-geostrophic
Modell, Tellus 6 (3) (1954) 273-286, http://dx.doi.org/10.1111/j.2153-3490.
1954.tb01123.x, URL https://onlinelibrary.wiley.com/doi/abs/10.1111/§.2153-
3490.1954.tb01123.x, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/
j-2153-3490.1954.tb01123.x.

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR,
2016, pp. 770-778, http://dx.doi.org/10.1109/CVPR.2016.90.

S. Xie, R.B. Girshick, P. Dolldr, Z. Tu, K. He, Aggregated residual transformations
for deep neural networks, 2016, CoRR, arXiv:1611.05431.

S. Zagoruyko, N. Komodakis, Wide residual networks, 2016, CoRR arXiv:1605.
07146.

12

Journal of Computational Science 62 (2022) 101707

[41] A. Mathuriya, D. Bard, P. Mendygral, L. Meadows, J. Arnemann, L. Shao, S. He,

T. Karna, D. Moise, S.J. Pennycook, K. Maschoff, J. Sewall, N. Kumar, S. Ho,
M. Ringenburg, Prabhat, V. Lee, Cosmoflow: Using deep learning to learn the
universe at scale, 2018, arXiv:1808.04728.

[42] R. Hallberg, Using a resolution function to regulate parameterizations of oceanic

mesoscale eddy effects, Ocean Model. 72 (2013) 92-103.

Sam Partee is a Machine Learning Engineer at Hewlett
Packard Enterprise. He specializes in the intersection of
High Performance Computing (HPC) and Machine Learning
(ML). Before HPE, Sam worked for Cray on ML research
and the Chapel parallel programming language. Sam holds
a Bachelor of Science in Computer Science from Haverford
College.

